Potassium-modified graphitic carbon nitride (K-g-C3N4) nanosheets are synthesized by a facile KCl-template method that holds the advantage of easy removal of residual template. A combination of XRD, X-ray photoelectron spectroscopy, and inductively coupled plasma analyses are utilized to characterize the obtained resultant K-g-C3N4 architectures, which are composed of nanosheets of variable thickness (<10 nm). Photocatalytic hydrogen evolution experiments under visible light irradiation showed that K-g-C3N4 nanosheets have high photocatalytic activities (up to about thirteen times higher than that of pure g-C3 N4 ) as well as good stability (no reduction in activity within 16 h); both features emanate from their unique structural characteristics. These results illustrate the viability of this methodology for the facile synthesis of efficient heterogeneous photocatalysts for potential commercial applications.
Keywords: electron microscopy; hydrogen; nanostructures; photochemistry; template synthesis.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.