In adults, insulin resistance may decrease the thermogenic effect of food, contributing to weight gain. We aimed to determine the effect of insulin resistance on energy expenditure in children with long-standing obesity. We hypothesized that thermogenic effect of food would decrease with increasing insulin resistance. Energy expenditure was measured using whole room indirect calorimetry in obese children 7 to 18 years old. Participants were fed a high-fat meal with energy content equal to 35% of measured resting energy expenditure. Thermogenic effect of food was measured for 180 minutes posttest meal and expressed as a percent of calories consumed. Body composition was assessed using whole-body dual-energy x-ray absorptiometry. Fasting glucose, insulin, and hemoglobin A1C were measured. Complete data were available for 25 children (median age, 12.1 years; 52% male). As expected, a significant decrease in resting energy expenditure was observed with increasing Tanner stage (P = .02 by Kruskal-Wallis test). Insulin sensitivity, as determined by homeostasis model assessment index equation, did not significantly affect resting energy expenditure (P = .3) or thermogenic effect of food (P = .7) after adjustment for Tanner stage. In conclusion, our study did not find an association between insulin resistance and energy expenditure in obese children.
Keywords: Calorimetry; Energy metabolism; Insulin resistance; Obesity; Pediatrics.
Copyright © 2014 Elsevier Inc. All rights reserved.