Purpose: Today's implanted brain-computer interfaces make direct contact with the brain or even penetrate the tissue, bearing additional risks with regard to safety and stability. What is more, these approaches aim to control prosthetic devices as assistive tools and do not yet strive to become rehabilitative tools for restoring lost motor function.
Methods: We introduced a less invasive, implantable interface by applying epidural electrocorticography in a chronic stroke survivor with a persistent motor deficit. He was trained to modulate his natural motor-related oscillatory brain activity by receiving online feedback.
Results: Epidural recordings of field potentials in the beta-frequency band projecting onto the anatomical hand knob proved most successful in discriminating between the attempt to move the paralyzed hand and to rest. These spectral features allowed for fast and reliable control of the feedback device in an online closed-loop paradigm. Only seven training sessions were required to significantly improve maximum wrist extension.
Conclusions: For patients suffering from severe motor deficits, epidural implants may decode and train the brain activity generated during attempts to move with high spatial resolution, thus facilitating specific and high-intensity practice even in the absence of motor control. This would thus transform them from pure assistive devices to restorative tools in the context of reinforcement learning and neurorehabilitation.
Keywords: Electrocorticography; brain-computer interface; brain-machine interface; epidural implant; neuroprosthetics; neurorehabilitation; stroke.