Seizures have variable effects on brain. Numerous studies have examined the consequences of seizures, in light of the way that these may alter the susceptibility of the brain to seizures, promote epileptogenesis, or functionally alter brain leading to seizure-related comorbidities. In many -but not all- situations, seizures shift brain function towards a more immature state, promoting the birth of newborn neurons, altering the dendritic structure and neuronal connectivity, or changing neurotransmitter signaling towards more immature patterns. These effects depend upon many factors, including the seizure type, age of seizure occurrence, sex, and brain region studied. Here we discuss some of these findings proposing that these seizure-induced immature features do not simply represent rejuvenation of the brain but rather a de-synchronization of the homeostatic mechanisms that were in place to maintain normal physiology, which may contribute to epileptogenesis or the cognitive comorbidities.