Ghrelin receptor regulates appetite and satiety during aging in mice by regulating meal frequency and portion size but not total food intake

J Nutr. 2014 Sep;144(9):1349-55. doi: 10.3945/jn.114.191171. Epub 2014 Jul 2.

Abstract

Aging is often associated with overweight and obesity. There exists a long-standing debate about whether meal pattern also contributes to the development of obesity. The orexigenic hormone ghrelin regulates appetite and satiety by activating its receptor, growth hormone secretagogue receptor (GHS-R). In mice, circulating ghrelin concentrations and brain GHS-R expression were shown to increase with aging. To assess whether GHS-R regulates feeding pattern during aging, we studied meal patterns for the following cohorts of male mice fed a normal unpurified diet: 1) 3-4 mo, young wild-type (WT) mice; 2) 3-4 mo, young Ghsr-null (Ghsr(-/-)) mice; 3) 12-14 mo, middle-aged WT (WT-M) mice; 4) 12-14 mo, middle-aged Ghsr(-/-) (Ghsr(-/-)-M) mice; 5) 24-26 mo, old WT (WT-O) mice; and 6) 24-26 mo, old Ghsr(-/-) (Ghsr(-/-)-O) mice. Although the total daily food intake of Ghsr(-/-) mice was similar to that of WT controls, Ghsr(-/-)-M and Ghsr(-/-)-O mice had 9% (P = 0.07) and 16% (P < 0.05) less body weight compared with WT-M and WT-O mice, respectively, primarily due to reduced fat mass (P < 0.05, WT-M vs. Ghsr(-/-)-M and WT-O vs. Ghsr(-/-)-O). Intriguingly, Ghsr(-/-)-M mice ate larger meals (on average, Ghsr(-/-)-M mice ate 0.117 g/meal and WT-M mice ate 0.080 g/meal; P < 0.01) and took a longer time to eat (Ghsr(-/-)-M, 196.0 s and WT-M, 128.9 s; P < 0.01), but ate less frequently (Ghsr(-/-)-M, 31.0 times/d and WT-M, 42.3 times/d; P < 0.05) than WT-M controls. In addition, we found that expression of hypothalamic orexigenic peptides, neuropeptide Y (NPY) and agouti-related peptide (AgRP), was relatively lower in aged WT mice (P = 0.09 for NPY and P = 0.06 for AgRP), but anorexic peptide pro-opiomelanocortin (POMC) expression remained unchanged between the WT age groups. Interestingly, old Ghsr(-/-) mice had greater hypothalamic NPY expression (102% higher; P < 0.05) and AgRP expression (P = 0.07) but significantly lower POMC expression (P < 0.05) when compared with age-matched WT-O controls. Thus, our results indicate that GHS-R plays an important role in the regulation of meal pattern and that GHS-R ablation may modulate feeding behavior through the regulation of hypothalamic neuropeptides. Our results collectively suggest that ghrelin receptor antagonism may have a beneficial effect on metabolism during aging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adipose Tissue
  • Age Factors
  • Aging
  • Animals
  • Appetite Regulation*
  • Body Weight
  • Eating
  • Energy Intake*
  • Feeding Behavior*
  • Ghrelin / metabolism*
  • Hypothalamus
  • Male
  • Meals
  • Mice
  • Mice, Inbred Strains
  • Neuropeptides / metabolism
  • Portion Size*
  • Receptors, Ghrelin / metabolism*
  • Satiation
  • Satiety Response*

Substances

  • Ghrelin
  • Neuropeptides
  • Receptors, Ghrelin