Three H9N2 avian influenza viruses were isolated from the Dongting Lake wetland, among which one was from fresh egret feces, the other two were from chicken cloacal swabs in poultry markets. Phylogenetic analyses suggested that eight genes of the egret-derived H9N2 virus might come from Korean-like or American-like lineages. The two poultry-derived H9N2 viruses were reassortants between the CK/BJ/94-like and G1-like viruses. Except the PB1 genes (90.6%), the nucleotide sequence of other internal genes of the two viruses exhibited high homology (>95%). In addition, they also exhibited high homology (96-98.3%) with some genes of the H7N9 virus that caused an epidemic in China in 2013. Nucleotide sequence of the poultry-derived and egret-derived H9N2 viruses shared low homology. Infection studies showed that the egret-derived H9N2 virus was non-pathogenic to both mice and chickens, and the virus was unable to infect chickens even through 8 passages continuously in the lung. On the other hand, the chickens infected by poultry-derived viruses showed obvious clinical symptoms and even died; the infected mice showed no noticeable clinical symptoms and weight loss, but viruses could be detected in their lungs. In conclusion, for the egret-derived H9N2 virus, it would take a long adaptation process to achieve cross-species transmission in poultry and mammals. H9N2 viruses isolated at different times from the same host species in the same geographical region presented different evolutionary status, and virus isolated from different hosts in the same geographical region exhibited genetic diversity. Therefore, it is important to continue the H9N2 virus surveillance for understanding their evolutionary trends so as to provide guidance for disease control and prevention.