Background: Heterozygous mutations in the chromatin remodeling gene CHD7 cause CHARGE syndrome, a developmental disorder with variable craniofacial dysmorphisms and respiratory difficulties. The molecular etiologies of these malformations are not well understood. Homozygous Chd7 null mice die by E11, whereas Chd7(Gt/+) heterozygous null mice are a viable and excellent model of CHARGE. We explored skeletal phenotypes in Chd7(Gt/+) and Chd7 conditional knockout mice, using Foxg1-Cre to delete Chd7 (Foxg1-CKO) in the developing eye, ear, nose, pharyngeal pouch, forebrain, and gut and Wnt1-Cre (Wnt1-CKO) to delete Chd7 in migrating neural crest cells.
Results: Foxg1-CKO mice exhibited postnatal respiratory distress and death, dysplasia of the eye, concha, and frontal bone, hypoplastic maxillary shelves and nasal epithelia, and reduced tracheal rings. Wnt1-CKO mice exhibited frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and cleft palate. In contrast, heterozygous Chd7(Gt/+) mice had apparently normal skeletal development.
Conclusions: Conditional deletion of Chd7 in ectodermal and endodermal derivatives (Foxg1-Cre) or migrating neural crest cells (Wnt1-Cre) results in varied and more severe craniofacial defects than in Chd7(Gt/+) mice. These studies indicate that CHD7 has an important, dosage-dependent role in development of several different craniofacial tissues.
Keywords: cleft palate; craniofacial disorders; skeletal dysplasia; trachea.
© 2014 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.