Background: Infliximab (IFX), a known monoclonal antibody against tumor necrosis factor-α (TNF-α), is used to treat Kawasaki disease (KD) patients with intravenous immunoglobulin (IVIG) resistance. The transcriptional modulation of inflammation following IFX therapy has not been reported in KD patients.
Methods: We investigated the transcript abundance profiles in whole blood obtained from eight IVIG-resistant KD subjects treated with IFX therapy using microarray platforms and compared them with those in initially IVIG-responsive subjects. A pathway analysis was performed using WikiPathways to search for the biological pathways of the transcript profiles. Four transcripts changed by IFX therapy were subsequently validated using quantitative real-time polymerase chain reaction.
Results: The pathway analysis showed the reduced abundance of transcripts in the nucleotide-binding oligomerization domain, matrix metalloproteinase (MMP), and inflammatory cytokine pathways and the increased abundance of transcripts in the T-cell receptor, apoptosis, TGF-β, and interleukin-2 pathways. Additionally, the levels of four transcripts (peptidase inhibitor-3, MMP-8, chemokine receptor-2, and pentraxin-3) related to KD vasculitis and IVIG resistance decreased after IFX therapy.
Conclusion: The administration of IFX was associated with both the signaling pathways of KD inflammation and several transcripts related to IVIG resistance factors. These findings provide strong theoretical support for the use of IFX in KD patients with IVIG resistance.