The tip of the root is covered by a thimble-shaped root cap that is the site of perception and transduction for many environmental stimuli. Until now, little was known about how the root cap of rice (Oryza sativa) develops and functions to regulate the adaptive behavior of the root. To address this, we examined the formation of the rice root cap during embryogenesis and characterized the anatomy and structure of the rice radicle root cap. We further investigated the role of the quiescent center in the de novo origin of the root cap. At the molecular level, we found that shoot-derived auxin was absolutely needed to trigger root cap regeneration when the quiescent center was removed. Our time-course analysis of transcriptomic dynamics during the early phases of root cap regeneration indicated that changes in auxin signaling and appropriate levels of cytokinin are critical for root cap regeneration after the removal of the root cap. Moreover, we identified 152 genes that produce root cap-specific transcripts in the rice root tip. These findings together offer, to our knowledge, new mechanistic insights into the cellular and molecular events inherent in the formation and development of the root cap in rice and provide a basis for future research on the developmental and physiological function of the root cap of monocot crops.
© 2014 American Society of Plant Biologists. All Rights Reserved.