Hydration and chain entanglement determines the optimum thickness of poly(HEMA-co-PEG₁₀MA) brushes for effective resistance to settlement and adhesion of marine fouling organisms

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11448-58. doi: 10.1021/am502084x. Epub 2014 Jul 1.

Abstract

Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements. The fouling resistance of these films was investigated by protein adsorption, attachment of the marine bacterium Cobetia marina, settlement and strength of attachment tests of zoospores of the marine alga Ulva linza and static immersion field tests. These assays show that the polymer film thickness influenced the antifouling performance, in that there is an optimum thickness range, 200-400 Å (dry thickness), where fouling of all types, as well as algal spore adhesion, was lower. Field test results also showed lower fouling within the same thickness range after 2 weeks of immersion. Studies by quartz crystal microbalance with dissipation and underwater captive bubble contact angle measurements show a strong correlation between lower fouling and higher hydration, viscosity and surface energy of the poly(HEMA-co-PEG10MA) brushes at thicknesses around 200-400 Å. We hypothesize that the reduced antifouling performance is caused by a lower hydration capacity of the polymer for thinner films, and that entanglement and crowding in the film reduces the conformational freedom, hydration capacity and fouling resistance for thicker films.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aquatic Organisms / growth & development*
  • Bacterial Adhesion*
  • Polyamines / chemistry*
  • Polyethylene Glycols / chemistry*
  • Polyhydroxyethyl Methacrylate / analogs & derivatives*
  • Polyhydroxyethyl Methacrylate / chemistry
  • Pseudomonas / growth & development*
  • Ulna / chemistry*

Substances

  • Polyamines
  • poly(2-hydroxyethyl methacrylate)-polyamine graft copolymer
  • Polyhydroxyethyl Methacrylate
  • Polyethylene Glycols