Bottom-up synthesis of anatase nanoparticles with graphene domains

ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10638-48. doi: 10.1021/am502322y. Epub 2014 Jun 27.

Abstract

Using alizarin and titanium isopropoxide, we have succeeded in preparing a hybrid form of nanostructured graphene-TiO2 following a bottom-up synthetic approach. This novel graphene-based composite offers a practical alternative to synthesizing photocatalytically active materials with maximized graphene-TiO2 interface. The molecular precursor alizarin was chosen because it efficiently binds to TiO2 through the hydroxyl groups and already possesses the graphene building block through its anthracene basis. XPS and Raman spectroscopy proved that the calcined material contained majority sp(2)-hybridized carbon that formed graphene-like clusters. XRD data showed the integrated structures maintained their anatase crystallography, therefore preserving the material's properties without going through phase transitions to rutile. The enhanced graphene and TiO2 interface was confirmed using DFT computational techniques. The photocatalytic activity of the graphene-TiO2 materials was demonstrated through degradation of methylene blue.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.