In this paper, a novel DNA-length-dependent fluorescent sensor was constructed based on the fluorescence resonance energy transfer. In the self-assembled multilayers (Quartz/GO/PDDA/Tx-DNA/PDDA/ZnO@CdS), ZnO@CdS and graphene oxide(GO) were employed as an energy donor and an energy acceptor, respectively. Single-stranded Tx-DNA (x represents different chain length of DNA) and poly(diallydimethylammonium) chloride (PDDA) were used as a linker. In the presence of complementary Px-DNA, the formation of double-stranded DNA leads to a change in chain length and achieves the purpose of changing the distance between ZnO@CdS and GO. Thereby, it enhances the efficiency of energy transfer between ZnO@CdS and GO resulting in the quench of fluorescence of ZnO@CdS, and thus different length DNA sequence was detected.
Keywords: DNA; Fluorescence resonance energy transfer; Graphene oxide; Quantum dots; Self-assembled multilayers.
Copyright © 2014 Elsevier B.V. All rights reserved.