Larger CO₂ source at the equatorial Pacific during the last deglaciation

Sci Rep. 2014 Jun 11:4:5261. doi: 10.1038/srep05261.

Abstract

While biogeochemical and physical processes in the Southern Ocean are thought to be central to atmospheric CO₂ rise during the last deglaciation, the role of the equatorial Pacific, where the largest CO₂ source exists at present, remains largely unconstrained. Here we present seawater pH and pCO₂ variations from fossil Porites corals in the mid equatorial Pacific offshore Tahiti based on a newly calibrated boron isotope paleo-pH proxy. Our new data, together with recalibrated existing data, indicate that a significant pCO₂ increase (pH decrease), accompanied by anomalously large marine (14)C reservoir ages, occurred following not only the Younger Dryas, but also Heinrich Stadial 1. These findings indicate an expanded zone of equatorial upwelling and resultant CO₂ emission, which may be derived from higher subsurface dissolved inorganic carbon concentration.

Publication types

  • Research Support, Non-U.S. Gov't