A size- and shape-selective synthesis of pentagonally twinned silver icosahedral nanoparticles (AgIhNPs), one of the five platonic solid morphologies, has been developed by integrating three key factors: nuclei templating by copper, photochemical development using violet LED light and chemical oxidative etching. The presence of copper is essential for AgIhNP shape selection via the promotion of icosahedral nuclei in precursor NPs. Violet light (401-410 nm) is crucial to promote plasmonic selection of near-spherical AgIhNPs. Oxidative etching with hydrogen peroxide and photochemical reduction with citrate establishes a red-ox equilibrium for the photochemical selection of AgIhNPs. The addition of chloride ions improves size- and shape-selectivity. Finally, the demonstration of 1-D growth of AgIhNPs to pentagonal pins initiated at AgIhNP pentagonal-twinned defects highlights a universal role of twinned defects for the formation of anisotropic nanoparticles.