The allelochemical alliarinoside present in garlic mustard (Alliaria petiolata), an invasive plant species in North America, was chemically synthesized using an efficient and practical synthetic strategy based on a simple reaction sequence. Commercially available 1,2,3,4,6-penta-O-acetyl-β-D-glucopyranose was converted into prop-2-enyl 2',3',4',6'-tetra-O-acetyl-β-D-glucopyranoside and subjected to epoxidation. In a one-pot reaction, ring-opening of the epoxide using TMSCN under solvent free conditions followed by treatment of the formed trimethylsilyloxy nitrile with pyridine and phosphoryl chloride, afforded the acetylated β-unsaturated nitriles (Z)-4-(2',3',4',6'-tetra-O-β-D-glucopyranosyloxy)but-2-enenitrile and its isomer (E)-4-(2',3',4',6'-tetra-O-β-D-glucopyranosyloxy)but-2-enenitrile. Deacetylation of Z- and/or E-isomers afforded the target molecules alliarinoside and its isomer.
Keywords: Allyl β-d-glucopyranoside tetra-acetate; Deprotection; Epoxidation; Trimethylsilyl cyanide; α,β-Unsaturated nitriles.
Copyright © 2014 Elsevier Ltd. All rights reserved.