The performance of a commercially produced (62)Zn/(62)Cu microgenerator system, and an associated kit-based radiopharmaceutical synthesis method, was evaluated for clinical site production of [(62)Cu]Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)), an investigational agent for PET perfusion imaging. Using 37 generators, containing 1.84±0.23 GBq (62)Zn at 9:00 AM on the day of clinical use, a total of 45 patient doses of [(62)Cu]Cu-ETS (672±172 MBq) were delivered without difficulty. (62)Cu elution yields were high (approximately 90%), accompanied by extremely low (62)Zn breakthrough (<0.001%). Radiopharmaceutical preparation, from the start-of-elution to time-of-injection, consumed less than five minutes. The (62)Zn/(62)Cu microgenerator was a dependable source of short-lived positron-emitting (62)Cu, and the kit-based synthesis proved to be rapid, robust, and highly reliable for "on-demand" delivery of [(62)Cu]Cu-ETS for PET perfusion imaging.
Keywords: (62)Zn/(62)Cu generator; PET radiopharmaceuticals; Tumor perfusion; [(62)Cu]Cu–ETS (copper(II) ethylglyoxal bis(thiosemicarbazone)).
Copyright © 2014 Elsevier Ltd. All rights reserved.