New type of liquid embolic agents based on a liquid crystalline material of glyceryl monooleate (GMO) was developed and evaluated in this study. Ternary phase diagram of GMO, water and ethanol was constructed and three isotropic liquids (ILs, GMO:ethanol:water=49:21:30, 60:20:20 and 72:18:10 (w/w/w)) were selected as potential liquid embolic agents, which could spontaneously form viscous gel cast when contacting with water or physiological fluid. The ILs exhibited excellent microcatheter deliverability due to low viscosity, and were proved to successfully block the saline flow when performed in a device to simulate embolization in vitro. The ILs also showed good cytocompatibility on L929 mouse fibroblast cell line. The embolization of ILs to rabbit kidneys was performed successfully under monitoring of digital subtraction angiography (DSA), and embolic degree was affected by the initial formulation composition and used volume. At 5th week after embolization, DSA and computed tomography (CT) confirmed the renal arteries embolized with IL did not recanalize in follow-up period, and an obvious atrophy of the embolized kidney was observed. Therefore, the GMO-based liquid embolic agents showed feasible and effective to embolize, and potential use in clinical interventional embolization therapy.
Keywords: Embolization; Glyceryl monooleate; Isotropic liquid; Liquid crystalline material; Liquid embolic agent.
Copyright © 2014 Elsevier B.V. All rights reserved.