This study evaluated the role of physical and biological filter characteristics on the reduction of MS2 bacteriophage in biosand filters (BSFs). Three full-scale concrete Version 10 BSFs, each with a 55 cm sand media depth and a 12 L charge volume, reached 4 log10 reduction of MS2 within 43 days of operation. A consistently high reduction of MS2 between 4 log10 and 7 log10 was demonstrated for up to 294 days. Further examining one of the filters revealed that an average of 2.8 log10 reduction of MS2 was achieved within the first 5 cm of the filter, and cumulative virus reduction reached an average of 5.6 log10 after 240 days. Core sand samples from this filter were taken for protein, carbohydrate, and genomic extraction. Higher reduction of MS2 in the top 5 cm of the sand media (0.56 log10 reduction per cm vs 0.06 log10 reduction per cm for the rest of the filter depth) coincided with greater diversity of microbial communities and increased concentrations of carbohydrates. In the upper layers, "Candidatus Nitrosopumilus maritimus" and "Ca. Nitrospira defluvii" were found as dominant populations, while significant amounts of Thiobacillus-related OTUs were detected in the lower layers. Proteolytic bacterial populations such as the classes Sphingobacteria and Clostridia were observed over the entire filter depth. Thus, this study provides the first insight into microbial community structures that may play a role in MS2 reduction in BSF ecosystems. Overall, besides media ripening and physical reduction mechanisms such as filter depth and long residence time (45 min vs 24 ± 8.5 h), the establishment of chemolithotrophs and proteolytic bacteria could greatly enhance the reduction of MS2.