Previous reports from this group have indicated that the immunoinhibitory programmed death (PD)-1 receptor and its ligand, PD-L1, are involved in the mechanism of immune evasion of bovine chronic infection. However, no functional analysis of bovine PD-L2 in cattle has been reported. Thus, in this study, the molecular function of bovine PD-L2 was analyzed in vitro. Recombinant PD-L2 (PD-L2-Ig), which comprises an extracellular domain of bovine PD-L2 fused to the Fc portion of rabbit IgG1, was prepared based on the cloned cDNA sequence for bovine PD-L2. Bovine PD-L2-Ig bound to bovine PD-1-expressing cells and addition of soluble bovine PD-1-Ig clearly inhibited the binding of PD-L2-Ig to membrane PD-1 in a dose-dependent manner. Cell proliferation and IFN-γ production were significantly enhanced in the presence of PD-L2-Ig in peripheral blood mononuclear cells (PBMCs) from cattle. Moreover, PD-L2-Ig significantly enhanced IFN-γ production from virus envelope peptides-stimulated PBMCs derived from bovine leukemia virus-infected cattle. Interestingly, PD-L2-Ig-induced IFN-γ production was further enhanced by treatment with anti-bovine PD-1 antibody. These data suggest potential applications of bovine PD-L2-Ig as a therapy for bovine diseases.
Keywords: bovine leukemia virus; gamma-interferon; programmed death-1; programmed death-ligand 2.
© 2014 The Societies and Wiley Publishing Asia Pty Ltd.