Graphene quantum dots were prepared by ultrasonic route and served as a highly selective water-soluble probe for sensing of Hg(2+). The fluorescence emission spectrum of graphene quantum dots was at about 430nm. In the presence of Hg(2+), the fluorescence of the quantum dots significantly quenched. And the fluorescence intensity gradually decreased with the increasing concentration of Hg(2+). The change of fluorescence intensity is directly proportional to the concentration of Hg(2+). Under optimum conditions, the linear range for the detection of Hg(2+) was 8.0×10(-7) to 9×10(-6)M with a detection limit of 1.0×10(-7)M. In addition, the preliminary mechanism of fluorescence quenching was discussed in the paper. The constructed sensor with high sensitivity and selectivity, simple, rapid properties makes it valuable for further application.
Keywords: Fluorescence analysis; Graphene quantum dots; Mercury ion; Sensor.
Copyright © 2014 Elsevier B.V. All rights reserved.