What weather variables are important in predicting heat-related mortality? A new application of statistical learning methods

Environ Res. 2014 Jul:132:350-9. doi: 10.1016/j.envres.2014.04.004. Epub 2014 May 14.

Abstract

Hot weather increases risk of mortality. Previous studies used different sets of weather variables to characterize heat stress, resulting in variation in heat-mortality associations depending on the metric used. We employed a statistical learning method - random forests - to examine which of the various weather variables had the greatest impact on heat-related mortality. We compiled a summertime daily weather and mortality counts dataset from four U.S. cities (Chicago, IL; Detroit, MI; Philadelphia, PA; and Phoenix, AZ) from 1998 to 2006. A variety of weather variables were ranked in predicting deviation from typical daily all-cause and cause-specific death counts. Ranks of weather variables varied with city and health outcome. Apparent temperature appeared to be the most important predictor of heat-related mortality for all-cause mortality. Absolute humidity was, on average, most frequently selected as one of the top variables for all-cause mortality and seven cause-specific mortality categories. Our analysis affirms that apparent temperature is a reasonable variable for activating heat alerts and warnings, which are commonly based on predictions of total mortality in next few days. Additionally, absolute humidity should be included in future heat-health studies. Finally, random forests can be used to guide the choice of weather variables in heat epidemiology studies.

Keywords: Absolute humidity; Heat; Mortality; Random forests; Temperature; Weather.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chicago / epidemiology
  • Cities / epidemiology*
  • Hot Temperature*
  • Humans
  • Mortality*
  • Philadelphia / epidemiology
  • Statistics as Topic