Crystallization and preliminary crystallographic analysis of human muscle phosphofructokinase, the main regulator of glycolysis

Acta Crystallogr F Struct Biol Commun. 2014 May;70(Pt 5):578-82. doi: 10.1107/S2053230X14008723. Epub 2014 Apr 25.

Abstract

Whereas the three-dimensional structure and the structural basis of the allosteric regulation of prokaryotic 6-phosphofructokinases (Pfks) have been studied in great detail, knowledge of the molecular basis of the allosteric behaviour of the far more complex mammalian Pfks is still very limited. The human muscle isozyme was expressed heterologously in yeast cells and purified using a five-step purification protocol. Protein crystals suitable for diffraction experiments were obtained by the vapour-diffusion method. The crystals belonged to space group P6222 and diffracted to 6.0 Å resolution. The 3.2 Å resolution structure of rabbit muscle Pfk (rmPfk) was placed into the asymmetric unit and optimized by rigid-body and group B-factor refinement. Interestingly, the tetrameric enzyme dissociated into a dimer, similar to the situation observed in the structure of rmPfk.

Keywords: allosteric regulation; human muscle phosphofructokinase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Crystallization
  • Crystallography
  • Glycolysis / physiology*
  • Humans
  • Molecular Sequence Data
  • Muscle, Skeletal / enzymology*
  • Phosphofructokinase-1, Muscle Type / chemistry*
  • Phosphofructokinase-1, Muscle Type / physiology*
  • Protein Structure, Secondary
  • Protein Structure, Tertiary

Substances

  • Phosphofructokinase-1, Muscle Type