Objectives: To assess the effectiveness of computer-aided detection (CAD) as a second reader or concurrent reader in helping radiologists who are moderately experienced in computed tomographic colonography (CTC) to detect colorectal polyps.
Methods: Seventy CTC datasets (34 patients: 66 polyps ≥6 mm; 36 patients: no abnormalities) were retrospectively reviewed by seven radiologists with moderate CTC experience. After primary unassisted evaluation, a CAD second read and, after a time interval of ≥4 weeks, a CAD concurrent read were performed. Areas under the receiver operating characteristic (ROC) curve (AUC), along with per-segment, per-polyp and per-patient sensitivities, and also reading times, were calculated for each reader with and without CAD.
Results: Of seven readers, 86% and 71% achieved a higher accuracy (segment-level AUC) when using CAD as second and concurrent reader respectively. Average segment-level AUCs with second and concurrent CAD (0.853 and 0.864) were significantly greater (p < 0.0001) than average AUC in the unaided evaluation (0.781). Per-segment, per-polyp, and per-patient sensitivities for polyps ≥6 mm were significantly higher in both CAD reading paradigms compared with unaided evaluation. Second-read CAD reduced readers' average segment and patient specificity by 0.007 and 0.036 (p = 0.005 and 0.011), respectively.
Conclusions: CAD significantly improves the sensitivities of radiologists moderately experienced in CTC for polyp detection, both as second reader and concurrent reader.
Key points: • CAD helps radiologists with moderate CTC experience to detect polyps ≥6 mm. • Second and concurrent read CAD increase the radiologist's sensitivity for detecting polyps ≥6 mm. • Second read CAD slightly decreases specificity compared with an unassisted read. • Concurrent read CAD is significantly more time-efficient than second read CAD.