Exploring the diversity of arsenic resistance genes from acid mine drainage microorganisms

Environ Microbiol. 2015 Jun;17(6):1910-25. doi: 10.1111/1462-2920.12505. Epub 2014 Jun 23.

Abstract

The microbial communities from the Tinto River, a natural acid mine drainage environment, were explored to search for novel genes involved in arsenic resistance using a functional metagenomic approach. Seven pentavalent arsenate resistance clones were selected and analysed to find the genes responsible for this phenotype. Insights about their possible mechanisms of resistance were obtained from sequence similarities and cellular arsenic concentration. A total of 19 individual open reading frames were analysed, and each one was individually cloned and assayed for its ability to confer arsenic resistance in Escherichia coli cells. A total of 13 functionally active genes involved in arsenic resistance were identified, and they could be classified into different global processes: transport, stress response, DNA damage repair, phospholipids biosynthesis, amino acid biosynthesis and RNA-modifying enzymes. Most genes (11) encode proteins not previously related to heavy metal resistance or hypothetical or unknown proteins. On the other hand, two genes were previously related to heavy metal resistance in microorganisms. In addition, the ClpB chaperone and the RNA-modifying enzymes retrieved in this work were shown to increase the cell survival under different stress conditions (heat shock, acid pH and UV radiation). Thus, these results reveal novel insights about unidentified mechanisms of arsenic resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arsenates / metabolism
  • Arsenic / metabolism*
  • Arsenic / pharmacology
  • Biodiversity
  • Drainage, Sanitary
  • Drug Resistance, Bacterial / genetics*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Metagenomics
  • Molecular Sequence Data
  • RNA Processing, Post-Transcriptional / physiology
  • Rivers / microbiology*

Substances

  • Arsenates
  • Arsenic
  • arsenic acid

Associated data

  • GENBANK/JX294901
  • GENBANK/JX294902
  • GENBANK/JX294903
  • GENBANK/JX294904
  • GENBANK/JX294905
  • GENBANK/JX294906
  • GENBANK/JX294907