Aldo-keto reductase 1B10 (AKR1B10) is an oncogenic carbonyl reductase that eliminates α,β-unsaturated carbonyl compounds/lipid peroxides and mediates retinoic acid signaling. Targeted inhibition of AKR1B10 activity is a newly emerging strategy for cancer therapy. This study evaluated the inhibitory activity of a small chemical statil towards AKR1B10 and tested its antiproliferative activity in breast (BT-20) and lung (NCI-H460) cancer cells that express AKR1B10. Experimental results showed that statil inhibited AKR1B10 enzyme activity efficiently, with an IC50 at 0.21±0.06 µmol/l. Exposing BT-20 and NCI-H460 cells to statil and diclofenac, a selective AKR1B10 inhibitor, led to dose-dependent inhibition of cell growth and proliferation and plating efficiency. At higher doses (50 µmol/l or higher), statil induced cell death with apoptotic characteristics, such as DNA fragmentation and Annexin-V staining. Furthermore, statil enhanced the susceptibility of cells to acrolein, an active substrate of AKR1B10. Taken together, these data suggest that statil possesses potent antiproliferative activity by inhibiting AKR1B10 activity.