Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. Figure ᅟ