We show that a Stückelberg interferometer made of two massive Dirac cones can reveal information on band eigenstates such as the chirality and mass sign of the cones. For a given spectrum with two gapped cones, we propose several low-energy Hamiltonians differing by their eigenstates properties. The corresponding interband transition probability is affected by such differences in its interference fringes being shifted by a new phase of geometrical origin. This phase can be a useful bulk probe for topological band structures realized with artificial crystals.