Diffusion-weighted imaging with dual-echo echo-planar imaging for better sensitivity to acute stroke

AJNR Am J Neuroradiol. 2014 Jul;35(7):1293-302. doi: 10.3174/ajnr.A3921. Epub 2014 Apr 24.

Abstract

Background and purpose: Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging-enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging.

Materials and methods: Parallel imaging-enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information.

Results: Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts.

Conclusions: Parallel imaging-enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Disease
  • Adult
  • Aged
  • Brain / pathology*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Echo-Planar Imaging / methods*
  • Female
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Male
  • Middle Aged
  • Multimodal Imaging / methods*
  • Observer Variation
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Stroke / pathology*