Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions

AJR Am J Roentgenol. 2014 May;202(5):W466-74. doi: 10.2214/AJR.13.11450.

Abstract

Objective: The objective of our study was to assess the accuracy of iodine-related attenuation and iodine quantification as imaging biomarkers of iodine uptake in renal lesions on a single-phase nephrographic image with dual-energy MDCT.

Materials and methods: Fifty-nine patients (41 men, 18 women; age range, 28-84 years) with 80 renal lesions underwent contrast-enhanced dual-energy CT during the nephrographic phase of enhancement. Renal lesions were characterized as enhancing or nonenhancing on color-coded iodine overlay maps using iodine-related attenuation (in Hounsfield units) and iodine quantification (in milligrams per milliliter). For iodine-related attenuation the iodine uptake thresholds of 15 and 20 HU were tested; a threshold of 0.5 mg/mL was used for iodine quantification. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of iodine-related attenuation and iodine quantification were calculated from chi-square tests of contingency with histopathology or imaging follow-up as the reference standard. The 95% CIs were calculated from binomial expression. Differences in sensitivity and specificity were assessed by means of McNemar analysis.

Results: A significant difference in sensitivity and specificity was found between iodine-related attenuation with the thresholds of 15 HU (sensitivity, 91.4%; specificity, 93.3%; PPV, 91.4%; NPV, 93.3%) and 20 HU (sensitivity, 77.1%; specificity, 100%; PPV, 100%; NPV, 84.9%) (p = 0.008) and between iodine quantification (sensitivity, 100%; specificity, 97.7%; PPV, 97.2%; NPV, 100%) and iodine-related attenuation with a threshold of 20 HU (p = 0.004). No significant difference in sensitivity and specificity was found between iodine quantification and iodine-related attenuation with a threshold of 15 HU.

Conclusion: Contrast-enhanced dual-energy MDCT with iodine-related attenuation and iodine quantification allows accurate evaluation of iodine uptake in renal lesions on a single-phase nephrographic image.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Contrast Media*
  • Female
  • Humans
  • Iodine / pharmacokinetics*
  • Kidney Neoplasms / diagnostic imaging*
  • Kidney Neoplasms / metabolism*
  • Male
  • Middle Aged
  • Multidetector Computed Tomography*
  • Reproducibility of Results
  • Retrospective Studies

Substances

  • Contrast Media
  • Iodine