To address the effect of chitosan micropatterning on nerve regeneration, two sizes of parallel microstripes of chitosan are fabricated on the surface of coverslips using a micromodeling method. The morphology of the prepared polydimethylsiloxane stamps and chitosan micropatterning is observed by scanning electron microscopy and the wettability of the prepared micropatterning is evaluated using water contact-angle measurements. Schwann cell (SC) culture is used to evaluate the effect of chitosan micropatterning on cell behavior. The results show that the stripe-like chitosan micropatterning can be successfully fabricated on coverslip surfaces. SCs on 30/30 μm chitosan micropatterning shows the most obvious cell orientation. Moreover, the secretion of nerve growth factor by SCs indicate that the chitosan micropatterning has no negative influence on the normal physiological function of the cells. Thus, the study suggests that chitosan micropatterning can induce and regulate the growth of SCs well, which may have potential application in peripheral nerve regeneration.
Keywords: chitosan; micropatterning; miromodeling; peripheral nerve regeneration; schwann cells.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.