Use of doxorubicin (DOX) is limited by its toxicity in multiple organs. However, the relationship between different organs in response to DOX-induced injury is not well understood. We found that partial hepatectomy correlated with increased DOX-induced heart injury in vivo while supernatant prepared from DOX-treated hepatocytes mitigated DOX-induced cytotoxicity of cardiomyocytes in vitro. Meanwhile, the supernatant of DOX-treated cardiomyocytes mitigated DOX-induced cytotoxicity of hepatocytes. Investigation of the molecular mechanisms underlying these effects found that interleukin 6 (IL-6) was significantly up-regulated in DOX-treated tissues and cells, and supernatant from IL-6 treated cells had a similar effect to that from DOX-treated cells. Although the concentration of secreted IL-6 in supernatant from DOX-treated cells did not significantly differ, blockade of IL-6 signaling, by overexpressing SOCS3, suppressed expression of the downstream molecules trefoil factor family 3 (TFF3) and hepatocyte growth factor (HGF), impaired the mutually beneficial relationship between hepatocytes and cardiomyocytes. In conclusion, our study shows that a mutually beneficial relationship exists between hepatocytes and cardiomyocytes during the acute injury induced by DOX. Moreover, it demonstrates that this phenomenon may be indirectly caused by increased IL-6 expression and the activation of the downstream molecular mediators TFF3 and HGF in hepatocytes and cardiomyocytes, respectively.
Keywords: Cardiotoxicity; Doxorubicin; Hepatotoxicity; Interleukin 6; Mutually beneficial relationship.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.