Developing water-stable and adaptive supramolecular materials is of great importance in various research fields. Here, we demonstrate a new kind of water-stable, adaptive, and electroactive supramolecular ionic materials (SIM) that is formed from the aqueous solutions of imidazolium-based dication and dianionic dye (i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) through ionic self-assembly. The formed SIM not only shows good thermostability and unique optical and electrochemical properties that are raised from precursors of the SIM, but also exhibits good water-stability, salt-stability, and adaptive encapsulation properties toward some heterocyclic cationic dye molecules. UV-vis and FT-IR results demonstrate that this encapsulation property is essentially based on the electrostatic interactions between the guest dye molecules and ABTS in the SIM. The application of the SIM prepared here is illustrated by the development of a new electrochemical sensor for NADH sensing at a low potential. This study not only opens a new avenue to the preparation of the supramolecular materials, but also provides a versatile platform for electrochemical (bio)sensing.