Water-stable, adaptive, and electroactive supramolecular ionic material and its application in biosensing

ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5988-95. doi: 10.1021/am5011628. Epub 2014 Apr 11.

Abstract

Developing water-stable and adaptive supramolecular materials is of great importance in various research fields. Here, we demonstrate a new kind of water-stable, adaptive, and electroactive supramolecular ionic materials (SIM) that is formed from the aqueous solutions of imidazolium-based dication and dianionic dye (i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) through ionic self-assembly. The formed SIM not only shows good thermostability and unique optical and electrochemical properties that are raised from precursors of the SIM, but also exhibits good water-stability, salt-stability, and adaptive encapsulation properties toward some heterocyclic cationic dye molecules. UV-vis and FT-IR results demonstrate that this encapsulation property is essentially based on the electrostatic interactions between the guest dye molecules and ABTS in the SIM. The application of the SIM prepared here is illustrated by the development of a new electrochemical sensor for NADH sensing at a low potential. This study not only opens a new avenue to the preparation of the supramolecular materials, but also provides a versatile platform for electrochemical (bio)sensing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques / instrumentation*
  • Biosensing Techniques / methods
  • Electrochemical Techniques / instrumentation*
  • Electrochemical Techniques / methods
  • NAD / analysis*
  • Osmolar Concentration
  • Polymers / chemical synthesis
  • Polymers / chemistry*

Substances

  • Polymers
  • NAD