High-protein (HP) diets may attenuate bone loss during energy restriction. The objective of the current study was to determine whether HP diets suppress bone turnover and improve bone quality in male rats during food restriction and whether dietary protein source affects this relation. Eighty 12-wk-old male Sprague Dawley rats were randomly assigned to consume 1 of 4 study diets under ad libitum (AL) control or restricted conditions [40% food restriction (FR)]: 1) 10% [normal-protein (NP)] milk protein; 2) 32% (HP) milk protein; 3) 10% (NP) soy protein; or 4) 32% (HP) soy protein. After 16 wk, markers of bone turnover, volumetric bone mineral density (vBMD), microarchitecture, strength, and expression of duodenal calcium channels were assessed. FR increased bone turnover and resulted in lower femoral trabecular bone volume (P < 0.05), higher cortical bone surface (P < 0.001), and reduced femur length (P < 0.01), bending moment (P < 0.05), and moment of inertia (P = 0.001) compared with AL. HP intake reduced bone turnover and tended to suppress parathyroid hormone (PTH) (P = 0.06) and increase trabecular vBMD (P < 0.05) compared with NP but did not affect bone strength. Compared with milk, soy suppressed PTH (P < 0.05) and increased cortical vBMD (P < 0.05) and calcium content of the femur (P < 0.01) but did not affect strength variables. During AL conditions, transient receptor potential cation channel, subfamily V, member 6 was higher for soy than milk (P < 0.05) and HP compared with NP (P < 0.05). These data demonstrate that both HP and soy diets suppress PTH, and HP attenuates bone turnover and increases vBMD regardless of FR, although these differences do not affect bone strength. The effects of HP and soy may be due in part to enhanced intestinal calcium transporter expression.
© 2014 American Society for Nutrition.