Because of the increase in bacterial resistance, there is a need for new antimicrobial agents. In particular, Staphylococcus aureus is a frequent cause of severe infections and has an extraordinary capacity to develop antibiotic multiresistance, including resistance to glycopeptides, linezolid, and daptomycin. Although the incidence of methicillin-resistant S. aureus (MRSA) seems to have stabilized in the last few years, its wide dissemination in healthcare settings and in the community is a cause of concern. Ceftaroline is a new broad-spectrum cephalosporin with bactericidal activity against Gram-positive bacteria, including MRSA and multidrug-resistant Streptococcus pneumoniae. In addition, this drug is active against staphylococci showing resistance to glycopeptides, linezolid, and daptomycin. The ceftaroline MIC90 against MRSA ranges from 0.5-2mg/L and that against methicillin-resistant coagulase-negative staphylococci is 0.5mg/L. Ceftaroline has also good activity against respiratory pathogens including Haemophilus influenzae and Moraxella catarrhalis. Although this drug is active against Enterobacteriaceae, it does not retain activity when these isolates produce extended-spectrum beta-lactamases, carbapenemases or hyperproduce AmpC. Ceftaroline is not active against nonfermentative Gram-negative bacilli. Ceftaroline is an interesting addition to the therapeutic armamentarium against MRSA and constitutes an important option for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive microorganisms.
Keywords: Ceftarolina; Ceftaroline; Coagulase-negative staphylococci; Estafilococos coagulasa negativa; MRSA; Microorganismos grampositivos multirresistentes; Multiresistant Gram-positive microorganisms; PBP2a; SARM; Staphylococcus aureus; mecA; mecC.
Copyright © 2014 Elsevier España, S.L. All rights reserved.