An integrated chemical and ecotoxicological assessment for the photocatalytic degradation of vancomycin

Environ Technol. 2014 May-Jun;35(9-12):1234-42. doi: 10.1080/09593330.2013.865085.

Abstract

The photocatalytic degradation of an antibiotic, vancomycin B hydrochloride (VAN-B), has been investigated in aqueous suspensions of titanium dioxide (TiO2) by monitoring the change in its concentration as well as the production of ammonia and chlorides as a function of irradiation time. The removal of 50mg L(-1) VAN-B solution yields maximum concentrations of 2.45 and 2.53 mg N-NH3 L(-1) after 120 min of photocatalytic oxidation using 0.1 and 0.2 g TiO2 L(-1), respectively. When 0.2 g TiO2 L(-1) were applied up to 87% of the stoichiometric amount of chloride was reached within 120 min of irradiation, corresponding to 0.087 mmol L(-1). A set ofbioassays (Daphnia magna, Pseudokirchneriella subcapitata and Ceriodaphnia dubia) was performed to evaluate the potential detoxification of VAN-B and its by-products of oxidation under chronic and acute tests. The toxicity of the treated VAN-B samples varied during the oxidation, due to the formation of some intermediate products more toxic than VAN-B. Despite almost total removal of VAN-B that was achieved within 120 min of irradiation, a significant increase in toxicity was observed in chronic tests proving that the chronic assays are more appropriate than acute ones to detect the impact of by-products formed during the photocatalytic degradation of antibiotics.

MeSH terms

  • Animals
  • Daphnia
  • Photolysis*
  • Toxicity Tests, Acute
  • Toxicity Tests, Chronic
  • Ultraviolet Rays
  • Vancomycin / radiation effects*
  • Vancomycin / toxicity
  • Water Pollutants, Chemical / radiation effects*
  • Water Pollutants, Chemical / toxicity

Substances

  • Water Pollutants, Chemical
  • Vancomycin