Cancer cell metabolism is often characterized by a shift from an oxidative to a glycolytic bioenergetics pathway, a phenomenon known as the warburg effect. Whether the deregulation of miRNAs contributes to the warburg effect remains largely unknown. Here we show that miR-181a expression is increased and thus induces a metabolic shift in colon cancer cells. miR-181a performs this function by inhibiting the expression of PTEN, leading to an increase of phosphorylated AKT which triggers metabolic shift. The increase of lactate production induced by miR-181a results in the rapid growth of cancer cells. These results identify miR-181a as a molecular switch involved in the orchestration of the warburg effect in colon cancer cells via the PTEN/AKT pathway.
Keywords: Glycolysis; PTEN; miR-181a.
Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.