Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces

Phys Rev Lett. 2014 Mar 14;112(10):106602. doi: 10.1103/PhysRevLett.112.106602. Epub 2014 Mar 12.

Abstract

Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4 nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.