Non-alcoholic fatty pancreas disease pathogenesis: a role for developmental programming and altered circadian rhythms

PLoS One. 2014 Mar 21;9(3):e89505. doi: 10.1371/journal.pone.0089505. eCollection 2014.

Abstract

Objectives: Emerging evidence suggests that maternal obesity (MO) predisposes offspring to obesity and the recently described non-alcoholic fatty pancreas disease (NAFPD) but involved mechanisms remain unclear. Using a pathophysiologically relevant murine model, we here investigated a role for the biological clock--molecular core circadian genes (CCG) in the generation of NAFPD.

Design: Female C57BL6 mice were fed an obesogenic diet (OD) or standard chow (SC) for 6 weeks, prior to pregnancy and throughout gestation and lactation: resulting offspring were subsequently weaned onto either OD (Ob_Ob and Con_Ob) or standard chow (Ob_Con and Con_Con) for 6 months. Biochemical, pro-inflammatory and pro-fibrogenic markers associated with NAFPD were then evaluated and CCG mRNA expression in the pancreas determined.

Results: Offspring of obese dams weaned on to OD (Ob_Ob) had significantly increased (p≤0.05): bodyweight, pancreatic triglycerides, macrovesicular pancreatic fatty-infiltration, and pancreatic mRNA expression of TNF-α, IL-6, α-SMA, TGF-β and increased collagen compared to offspring of control dams weaned on to control chow (Con_Con). Analyses of CCG expression demonstrated a phase shift in CLOCK (-4.818, p<0.01), REV-ERB-α (-1.4,p<0.05) and Per2 (3.27,p<0.05) in association with decreased amplitude in BMAL-1 (-0.914,p<0.05) and PER2 (1.18,p<0.005) in Ob_Ob compared to Con_Con. 2-way ANOVA revealed significant interaction between MO and post-weaning OD in expression of CLOCK (p<0.005), PER1 (p<0.005) and PER2 (p<0.05) whilst MO alone influenced the observed rhythmic variance in expression of all 5 measured CCG.

Conclusions: Fetal and neonatal exposure to a maternal obesogenic environment interacts with a post-natal hyper-calorific environment to induce offspring NAFPD through mechanisms involving perturbations in CCG expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Body Weight
  • CLOCK Proteins / genetics
  • CLOCK Proteins / metabolism
  • Circadian Rhythm*
  • Female
  • Gene Expression Regulation, Developmental
  • Mice, Inbred C57BL
  • Pancreatic Diseases / etiology*
  • Pancreatic Diseases / pathology
  • Pregnancy
  • Prenatal Exposure Delayed Effects*
  • RNA, Messenger / metabolism

Substances

  • RNA, Messenger
  • CLOCK Proteins
  • Clock protein, mouse