Miniaturized diagnostic devices hold the promise of accelerate the specific and sensitive detection of various biomarkers, which can translate into many areas of medicine - from cheaper clinical trials, to early diagnosis and treatment of complex diseases. Therefore, we report on a disposable integrated chip-based capillary immunoassay featuring a microfluidic ELISA format combining electrochemical detection and low-cost fabrication employing a dry film photoresist, Vacrel(®) 8100. The readily accessible carboxylate groups on the material surface allow fast and high yield immobilization of biomolecules using amine-specific coupling via reactive esters requiring no laborious surface pretreatment. The integrated microfluidic system provides a convenient platform for a flow-through immunoassay. Capillary force is used for easy reagent delivery and loading the chip channel. We performed rapid quantification of serum level of substance P, a potential biomarker of acute neuroinflammation, using the developed microfluidic immunochip. Our miniaturized assay demonstrated a sensitive electrochemical detection of the antigen at 15.4pgml(-1) (11.5pM) using only 5µl of the biological fluid while cutting the total assay preparation time in half and the read-out time to 10min. Combining microfluidics and fabrication suitable for mass production with the capability of testing clinically relevant samples creates conditions for the construction of low-cost and portable point of care diagnostic devices with minimal auxiliary electronics.
Keywords: Biochip; Electrochemical detection; Immunoassay; Microfluidics; Substance P.
Copyright © 2014 Elsevier B.V. All rights reserved.