Objective: The mechanisms of ectopic calcification in inflammatory diseases are poorly understood. We investigated the effects of inflammatory cytokines on the mechanisms of calcification in human adipose tissue-derived mesenchymal stem cells (hADSCs).
Methods: The effects of inflammatory cytokines were evaluated using hADSCs cultured in osteoblast induction medium. mRNA expression was measured by real-time PCR and protein levels were measured by western blotting. Cell mineralization was evaluated by Alizarin Red S staining.
Results: In hADSCs, administration of IL-6/soluble IL-6 receptor (sIL-6R), TNF or IL-1β accelerated calcification through enhanced expression of an osteoblast differentiation marker, runt-related transcription factor 2 (RUNX2). IL-6/sIL-6R had the greatest effect. The transcription of mRNA for receptor tyrosine kinase-like orphan receptor 2 (ROR2), involved in the non-canonical wingless-type (WNT) MMTV integration site pathway, was increased, while β-catenin expression, an essential factor in the canonical WNT signalling pathway for osteoblast differentiation, did not change. Suppression of signal transducer and activator of transcription 3 (STAT3), but not STAT1, by small interfering RNA (siRNA) exerted a strong inhibitory effect on RUNX2 and ROR2 expression, and inhibited accelerated calcification.
Conclusion: IL-6/sIL-6R stimulation accelerated the ROR2/WNT5A pathway in hADSCs in a STAT3-dependent manner, resulting in augmented calcification. These results suggest that the mechanisms of ectopic calcification accelerated by IL-6 in hADSCs may be involved in chronic inflammatory tissues and that IL-6 inhibitors may be beneficial in the treatment of ectopic calcification in inflammatory diseases.
Keywords: ADSCs; IL-6; ROR2; STAT3; WNT5A; ectopic calcification.
© The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.