An increase has been observed not only in the absolute number of CT examinations but also in the length of coverage and number of scanning phases, with the result that exposure to ionising radiation from CT is becoming an increasingly serious problem. The extent of the problem is not entirely known and cannot be adequately addressed without proper knowledge of all the phases that leads to the effective dose calculation. In light of the growing awareness of the issue of ionising radiation dose and the possible risk for the individual and the population, there is a need for radiologists, medical physicists and radiographers to play an active role in dose management. In this review, the authors try to delineate the problem in a consequential and multifaceted way: radiation-patient interaction, possible mechanisms of damage, main CT dose units, risk and its quantification in the population, with the aim of optimising the acquisition dose without diagnostic drawbacks. For an "up-to-date" use of CT, radiologists must know the dose concerns for the single patient and population, and use the CT apparatus with the best dose care; substitute CT with other diagnostic techniques when possible, especially in children; reduce the number/extension of scans and phases, and the dose in single scans and single examinations.