microRNAs in cardiovascular diseases: current knowledge and the road ahead

J Am Coll Cardiol. 2014 Jun 3;63(21):2177-87. doi: 10.1016/j.jacc.2014.01.050. Epub 2014 Feb 26.

Abstract

Over the last few years, the field of microribonucleic acid (miRNA) in cardiovascular biology and disease has expanded at an incredible pace. miRNAs are themselves part of a larger family, that of non-coding RNAs, the importance of which for biological processes is starting to emerge. miRNAs are ~22-nucleotide-long RNA sequences that can legate messenger (m)RNAs at partially complementary binding sites, and hence regulate the rate of protein synthesis by altering the stability of the targeted mRNAs. In the cardiovascular system, miRNAs have been shown to be critical regulators of development and physiology. They control basic functions in virtually all cell types relevant to the cardiovascular system (such as endothelial cells, cardiac muscle, smooth muscle, inflammatory cells, and fibroblasts) and, thus, are directly involved in the pathophysiology of many cardiovascular diseases. As a result of their role in disease, they are being studied for exploitation in diagnostics, prognostics, and therapeutics. However, there are still significant obstacles that need to be overcome before they enter the clinical arena. We present here a review of the literature and outline the directions toward their use in the clinic.

Keywords: cardiovascular disease; heart disease; microRNA.

Publication types

  • Review

MeSH terms

  • Animals
  • Cardiovascular Diseases / genetics*
  • Cardiovascular Diseases / therapy*
  • Genetic Therapy / methods
  • Genetic Therapy / trends*
  • Humans
  • MicroRNAs / genetics*
  • MicroRNAs / therapeutic use*

Substances

  • MicroRNAs