Tropomyosin-related kinase receptor B (TrkB) activation has been implicated in epileptogenesis. We investigated hippocampal levels of phosphorylated TrkB (p-TrkB) and potential antiepileptogenic actions of the tyrosine kinase inhibitor, lestaurtinib (CEP-701) in postnatal day 10 (P10) rat pups following hypoxic seizures (HS). Hippocampal expression of p-TrkB over total TrkB protein levels were assessed by immunoblot at 6, 12, or 24 h post-HS, and revealed a statistically significant and transient 1.5-fold increase in hippocampal p-TrkB 12 h post-HS compared to littermate normoxic controls. To investigate the effects of CEP-701, pups were treated with 2 doses of CEP-701 intraperitoneally (i.p.), 3 mg/kg/dose, immediately after and 12 h post-HS. P-TrkB levels and susceptibility to kainic acid (KA)-induced seizures at P14 were compared between post-HS CEP-701-treated pups, post-HS vehicle-treated pups and normoxic littermates. Post-treatment with CEP-701 reversed the increased TrkB phosphorylation to baseline normoxic levels and attenuated the HS-related enhanced susceptibility to KA-induced seizures at P14. Given its known clinical safety profile, CEP-701 is a promising clinically translatable therapy to prevent epileptogenesis in the immature brain.
Keywords: Epileptogenesis; Hypoxic seizures; Memory; Neonates; Tropomyosin-related kinase receptor; Tyrosine kinase receptor.
Copyright © 2014 Elsevier B.V. All rights reserved.