Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant

J Biol Chem. 1988 Jun 25;263(18):8561-4.

Abstract

Recent biochemical studies have shown that the fibroblasts from a patient with Ehlers-Danlos Syndrome Type VIIB produce nearly equal amounts of normal and shortened pro-alpha 2(I) collagen chains (Wirtz, M.K., Glanville, R. W., Steinmann, B., Rao, V. H., and Hollister, D. (1987) J. Biol. Chem. 262, 16376-16385). Compositional and sequencing studies of the abnormal pro-alpha 2(I) chain identified an interstitial deletion of 18 residues corresponding to the N-telopeptide of the collagen molecule. Since this region is encoded by a 54-base pair exon, number 6, the protein defect could have been caused by gene deletion, abnormal pre-mRNA splicing, or both. Here, in order to elucidate the molecular nature of this mutation we have analyzed the sequences of pro-alpha 2(I) collagen cDNA and genomic clones obtained from RNA and DNA of the patient's fibroblasts. Using oligomer-specific cloning we identified a cDNA that contains a 54-base pair deletion corresponding precisely to the sequence of exon 6. Identification of the normal gene was based on the finding of an identical sequence polymorphism in a normal cDNA and in the genomic clone derived from one of the two collagen alleles. The other gene, instead, displayed a base substitution (T to C) in the obligatory GT dinucleotide of the 5' splice-site sequence of intron 6. Analysis of nearly 100 base pairs immediately 5' to exons 5, 6, and 7, and 3' to exons 5 and 7 did not reveal any additional change. Therefore, the data strongly suggest that the observed GT-to-GC transition at the splice donor site of intron 6 generates an abnormally spliced mRNA in which the sequence of exon 5 is joined to the sequence of exon 7. Since skipping of exon 6 does not interfere with the coding frame of the mRNA, the resulting shortened polypeptide, albeit utilized in the assembly of a procollagen trimer, ultimately causes the Ehlers-Danlos Syndrome Type VII phenotype.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Base Sequence
  • Cells, Cultured
  • Collagen / genetics*
  • Ehlers-Danlos Syndrome / genetics*
  • Ehlers-Danlos Syndrome / metabolism
  • Exons*
  • Fibroblasts / metabolism
  • Genes
  • Genetic Variation
  • Humans
  • Molecular Sequence Data
  • Mutation*
  • Poly A / genetics
  • Poly A / isolation & purification
  • RNA / genetics
  • RNA / isolation & purification
  • RNA Precursors / genetics*
  • RNA Splicing*
  • RNA, Messenger
  • Skin / metabolism

Substances

  • RNA Precursors
  • RNA, Messenger
  • Poly A
  • RNA
  • Collagen

Associated data

  • GENBANK/J03464
  • GENBANK/M18057
  • GENBANK/M21189
  • GENBANK/X02488