Wood-based biochars were used as microbial fuel cell electrodes to significantly reduce cost and carbon footprint. The biochar was made using forestry residue (BCc) and compressed milling residue (BCp). Side-by-side comparison show the specific area of BCp (469.9m(2)g(-1)) and BCc (428.6cm(2)g(-1)) is lower than granular activated carbon (GAC) (1247.8m(2)g(-1)) but higher than graphite granule (GG) (0.44m(2)g(-1)). Both biochars showed power outputs of 532±18mWm(-2) (BCp) and 457±20mWm(-2) (BCc), comparable with GAC (674±10mWm(-2)) and GG (566±5mWm(-2)). However, lower material expenses made their power output cost 17-35US$W(-1), 90% cheaper than GAC (402US$W(-1)) or GG (392US$W(-1)). Biochar from waste also reduced the energy and carbon footprint associated with electrode manufacturing and the disposal of which could have additional agronomic benefits.
Keywords: Biochar; Bioelectrochemical; Electricity; Electrode; Microbial fuel cell.
Copyright © 2014 Elsevier Ltd. All rights reserved.