Negatively charged gold nanoparticles (GNP) and positively charged lysozyme (Lys) were alternately deposited on negatively charged cellulose mats via layer-by-layer (LBL) self-assembly technique. The fabricated multilayer films were characterized by energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FT-IR), and wide-angle X-ray diffraction (XRD). Morphology of the LBL film coated mats was observed by scanning electron microscopy (SEM). Thermal degradation properties were investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Additionally, the result of microbial inhibition assay indicated that the composite nanofibrous mats had excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, which could be used for antimicrobial packing, tissue engineering, wound dressing, etc.
Keywords: Bacterial inhibition activity; Electrospinning; Gold nanoparticles; Layer-by-layer; Lysozyme.
Copyright © 2014 Elsevier B.V. All rights reserved.