New functional cyclic aminomethylphosphine ligands for the construction of catalysts for electrochemical hydrogen transformations

Chemistry. 2014 Mar 10;20(11):3169-82. doi: 10.1002/chem.201304234. Epub 2014 Feb 12.

Abstract

Eight-membered cyclic functional bisphosphines, namely 1,5-di-aryl-3,7-di(2-pyridyl)-1,5-diaza-3,7-diphosphacyclooctanes (aryl=2-pyridyl, m-tolyl, p-tolyl, diphenylmethyl, benzyl, (R)-(+)-(α-methyl)benzyl), with 2-pyridyl substituents on the phosphorus atoms have been synthesized by condensation of 2-pyridylphosphine, formaldehyde, and the corresponding primary amine. The structures of some of these bisphosphines have been investigated by X-ray crystallography. The bisphosphines readily form neutral P,P-chelate complexes [(κ(2)-P,P-L)MCl2], cationic bis-P,P-chelate complexes [(κ(2)-P,P-L)2 M](2+), or a five-coordinate complex [(κ(2)-P,P-L)2 NiBr]Br. The electrochemical behavior of two of the nickel complexes, and their catalytic activities in electrochemical hydrogen evolution and hydrogen oxidation, including the fuel-cell test, have been studied.

Keywords: diazadiphosphacyclooctanes; electrochemistry; hydrogen; metal complexes; pyridylphosphines.