Temperature controlled tensile testing of individual nanowires

Rev Sci Instrum. 2014 Jan;85(1):013901. doi: 10.1063/1.4858815.

Abstract

We present a novel experimental method for quantitatively characterizing the temperature-dependent mechanical behavior of individual nanostructures during uniaxial straining. By combining a microelectromechanical tensile testing device with a low thermal mass and digital image correlation providing nm-level displacement resolution, we show successful incorporation of a testing platform in a vacuum cryostat system with an integrated heater and temperature control. Characterization of the local sample temperature and time-dependent response at both low and high temperature demonstrates a testing range of ∼90-475 K and steady-state drift rates less than 0.04 K/min. In situ operation of the tensile testing device employing resistively heated thermal actuators while imaging with an optical microscope enables high-resolution displacement measurements, from which stress-strain behavior of the nanoscale specimens is deduced. We demonstrate the efficacy of our approach in measuring the temperature dependence of tensile strength in nominally defect-free ⟨110⟩ Pd nanowhiskers. We uncover a pronounced sensitivity of the plastic response to testing temperature over a range of ∼300 K, with an ultimate strength in excess of 6 GPa at low temperature. The results are discussed in the context of thermally activated deformation mechanisms and defect nucleation in defect-free metallic nanostructures.