Background: Smad7 is the main negative regulatory protein in the transforming growth factor-β (TGF-β) downstream signaling pathway, which plays an important role in diabetic nephropathy (DN) and may be related to the ubiquitin proteasome pathway (UPP).
Aim: We investigated the role of UPP in regulating TGF-β/SMAD signaling and explored the therapeutic effect of the ubiquitin proteasome inhibitor MG132 on DN.
Methods: Wistar rats were randomly divided into a diabetes group and a normal control group. Rats in the diabetes group were injected intraperitoneally with streptozotocin. Diabetic rats were then randomly divided into a diabetic nephropathy group (DN group), an MG132 high concentration (MH) group, and an MG132 low concentration (ML) group. After 8 weeks of treatment, 24-hour urinary microalbumin (UAlb), urinary protein/urinary creatinine (Up/Ucr) values, ALT, AST, Bcr, kidney damage, TGF-β, Smad7, fibronectin (FN), and Smurf2 were detected.
Results: The body mass and Smad7 protein expression decreased in DN group, but kidney weight, kidney weight index, UAlb, Up/Ucr, FN and Smurf2 mRNA expression, and TGF-β protein expression increased. However, these changes diminished following treatment with MG132, and a more pronounced effect was evident in MH group compared to ML group.
Conclusion: MG132 alleviates kidney damage by inhibiting Smad7 ubiquitin degradation and TGF-β activation in DN.