Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1-7) agonist or an angiotensin (1-7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1-7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1-7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer.